by engr. afan bk
Digital circuits are electric circuits based on a number of discrete voltage levels. Digital circuits are the most common physical representation of Boolean algebra and are the basis of all digital computers. To most engineers, the terms "digital circuit", "digital system" and "logic" are interchangeable in the context of digital circuits. Most digital circuits use two voltage levels labeled "Low"(0) and "High"(1). Often "Low" will be near zero volts and "High" will be at a higher level depending on the supply voltage in use. Ternary (with three states) logic has been studied, and some prototype computers made.
Computers, electronic clocks, and programmable logic controllers (used to control industrial processes) are constructed of digital circuits. Digital Signal Processors are another example.
Building-blocks:
Logic gates
Adders
Binary Multipliers
Flip-Flops
Counters
Registers
Multiplexers
Schmitt triggers
1- LOGIC GATE
A logic gate performs a logical operation on one or more logic inputs and produces a single logic output. The logic normally performed is Boolean logic and is most commonly found in digital circuits. Logic gates are primarily implemented electronically using diodes or transistors, but can also be constructed using electromagnetic relays, fluidics, optics, molecules, or even mechanical elements.
In electronic logic, a logic level is represented by a voltage or current, (which depends on the type of electronic logic in use). Each logic gate requires power so that it can source and sink currents to achieve the correct output voltage. In logic circuit diagrams the power is not shown, but in a full electronic schematic, power connections are required.
2- ADDER
In electronics, an adder or summer is a digital circuit that performs addition of numbers. In modern computers adders reside in the arithmetic logic unit (ALU) where other operations are performed. Although adders can be constructed for many numerical representations, such as Binary-coded decimal or excess-3, the most common adders operate on binary numbers. In cases where twos complement or ones complement is being used to represent negative numbers, it is trivial to modify an adder into an adder-subtracter. Other signed number representations require a more complex adder.
3- BINARY MULTIPLIER
A binary multiplier is a electronic circuit used in digital electronics, such as a computer, to multiply two binary numbers. It is built using binary adders.
4- FLIP FLOP
In digital circuits, a flip-flop is a term referring to an electronic circuit (a bistable multivibrator) that has two stable states and thereby is capable of serving as one bit of memory. Today, the term flip-flop has come to mostly denote non-transparent (clocked or edge-triggered) devices, while the simpler transparent ones are often referred to as latches; however, as this distinction is quite new, the two words are sometimes used interchangeably (see history).
A flip-flop is usually controlled by one or two control signals and/or a gate or clock signal. The output often includes the complement as well as the normal output. As flip-flops are implemented electronically, they require power and ground connections.
5- COUNTER
In digital logic and computing, a counter is a device which stores (and sometimes displays) the number of times a particular event or process has occurred, often in relationship to a clock signal. In practice, there are two types of counters:
up counters, which increase (increment) in value
down counters, which decrease (decrement) in value
6- PROCESSOR REGISTER
In computer architecture, a processor register is a small amount of storage available on the CPU whose contents can be accessed more quickly than storage available elsewhere. Most, but not all, modern computer architectures operate on the principle of moving data from main memory into registers, operating on them, then moving the result back into main memory—a so-called load-store architecture. A common property of computer programs is locality of reference: the same values are often accessed repeatedly; and holding these frequently used values in registers improves program execution performance.
Processor registers are at the top of the memory hierarchy, and provide the fastest way for a CPU to access data. The term is often used to refer only to the group of registers that are directly encoded as part of an instruction, as defined by the instruction set. More properly, these are called the "architectural registers". For instance, the x86 instruction set defines a set of eight 32-bit registers, but a CPU that implements the x86 instruction set will often contain many more registers than just these eight.
Allocating frequently used variables to registers can be critical to a program's performance. This action, namely register allocation is performed by a compiler in the code generation phase.
7- MULTIPLEXER
In electronics, a multiplexer or mux (occasionally the term muldex or muldem[1] is also found, for a combination multiplexer-demultiplexer) is a device that performs multiplexing; it selects one of many analog or digital input signals and forwards the selected input into a single line. A multiplexer of 2n inputs has n select bits, which are used to select which input line to send to the output.
An electronic multiplexer makes it possible for several signals to share one device or resource, for example one A/D converter or one communication line, instead of having one device per input signal.
In electronics, a demultiplexer (or demux) is a device taking a single input signal and selecting one of many data-output-lines, which is connected to the single input. A multiplexer is often used with a complementary demultiplexer on the receiving end.
An electronic multiplexer can be considered as a multiple-input, single-output switch, and a demultiplexer as a single-input, multiple-output switch. The schematic symbol for a multiplexer is an isosceles trapezoid with the longer parallel side containing the input pins and the short parallel side containing the output pin. The schematic on the right shows a 2-to-1 multiplexer on the left and an equivalent switch on the right. The sel wire connects the desired input to the output.
8- SCHMITT TRIGGER
In electronics, a Schmitt trigger is a comparator circuit that incorporates positive feedback.
When the input is higher than a certain chosen threshold, the output is high; when the input is below another (lower) chosen threshold, the output is low; when the input is between the two, the output retains its value. The trigger is so named because the output retains its value until the input changes sufficiently to trigger a change. This dual threshold action is called hysteresis, and implies that the Schmitt trigger has some memory.
The benefit of a Schmitt trigger over a circuit with only a single input threshold is greater stability (noise immunity). With only one input threshold, a noisy input signal near that threshold could cause the output to switch rapidly back and forth from noise alone. A noisy Schmitt Trigger input signal near one threshold can cause only one switch in output value, after which it would have to move beyond the other threshold in order to cause another switch.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment