by engr. AFAN BK
An embedded system is a special-purpose computer system designed to perform one or a few dedicated functions, often with real-time computing constraints. It is usually embedded as part of a complete device including hardware and mechanical parts. In contrast, a general-purpose computer, such as a personal computer, can do many different tasks depending on programming. Embedded systems control many of the common devices in use today.
A modern example of an embedded system. Labelled parts include a microprocessor, RAM , and flash memory 7
Since the embedded system is dedicated to specific tasks, design engineers can optimize it, reducing the size and cost of the product, or increasing the reliability and performance. Some embedded systems are mass-produced, benefiting from economies of scale.
Physically, embedded systems range from portable devices such as digital watches and MP4 players, to large stationary installations like traffic lights, factory controllers, or the systems controlling nuclear power plants. Complexity varies from low, with a single microcontroller chip, to very high with multiple units, peripherals and networks mounted inside a large chassis or enclosure.
Physically, embedded systems range from portable devices such as digital watches and MP4 players, to large stationary installations like traffic lights, factory controllers, or the systems controlling nuclear power plants. Complexity varies from low, with a single microcontroller chip, to very high with multiple units, peripherals and networks mounted inside a large chassis or enclosure.
In general, "embedded system" is not an exactly defined term, as many systems have some element of programmability. For example, Handheld computers share some elements with embedded systems — such as the operating systems and microprocessors which power them — but are not truly embedded systems, because they allow different applications to be loaded and peripherals to be connected.
EXAMPLES OF EMBEDDED SYSTEMS
Embedded systems span all aspects of modern life and there are many examples of their use.
Telecommunications systems employ numerous embedded systems from telephone switches for the network to mobile phones at the end-user. Computer networking uses dedicated routers and network bridges to route data.
Consumer electronics include personal digital assistants (PDAs), mp3 players, mobile phones, videogame consoles, digital cameras, DVD players, GPS receivers, and printers. Many household appliances, such as microwave ovens, washing machines and dishwashers, are including embedded systems to provide flexibility, efficiency and features advanced. HVAC systems use networked thermostats to more accurately and efficiently control temperature that can change by time of day and season. Home automation uses wired- and wireless-networking that can be used to control lights, climate, security, audio/visual, surveillance, etc., all of which use embedded devices for sensing and controlling.
HISTORY
In the earliest years of computers in the 1930-40s, computers were sometimes dedicated to a single task, but were far too large and expensive for most kinds of tasks performed by embedded computers of today. Over time however, the concept of programmable controllers evolved from traditional electromechanical sequencers, via solid state devices, to the use of computer technology.
One of the first recognizably modern embedded systems was the Apollo Guidance Computer, developed by Charles Stark Draper at the MIT Instrumentation Laboratory. At the project's inception, the Apollo guidance computer was considered the riskiest item in the Apollo project as it employed the then newly developed monolithic integrated circuits to reduce the size and weight. An early mass-produced embedded system was the Autonetics D-17 guidance computer for the Minuteman missile, released in 1961. It was built from transistor logic and had a hard disk for main memory. When the Minuteman II went into production in 1966, the D-17 was replaced with a new computer that was the first high-volume use of integrated circuits. This program alone reduced prices on quad nand gate ICs from $1000/each to $3/each, permitting their use in commercial products.
CHARACTERISTICS
1.Embedded systems are designed to do some specific task, rather than be a general-purpose computer for multiple tasks. Some also have real-time performance constraints that must be met, for reasons such as safety and usability; others may have low or no performance requirements, allowing the system hardware to be simplified to reduce costs.
2.Embedded systems are not always standalone devices. Many embedded systems consist of small, computerized parts within a larger device that serves a more general purpose. For example, the Gibson Robot Guitar features an embedded system for tuning the strings, but the overall purpose of the Robot Guitar is, of course, to play music. Similarly, an embedded system in an automobile provides a specific function as a subsystem of the car itself.
3.The program instructions written for embedded systems are referred to as firmware, and are stored in read-only memory or Flash memory chips. They run with limited computer hardware resources: little memory, small or non-existent keyboard and/or screen.
USER INTERFACES
Embedded systems range from no user interface at all — dedicated only to one task — to complex graphical user interfaces that resemble modern computer desktop operating systems.
Simple systems
Simple embedded devices use buttons, LEDs, and small character- or digit-only displays, often with a simple menu system.
In more complex systems
A full graphical screen, with touch sensing or screen-edge buttons provides flexibility while minimising space used: the meaning of the buttons can change with the screen, and selection involves the natural behavior of pointing at what's desired.
Handheld systems often have a screen with a "joystick button" for a pointing device.
Many systems have "maintenance" or "test" interfaces that provide a menu or command system via an RS-232 interface. This avoids the cost of a display, but gives a lot of control. Most consumers cannot assemble the required cables, however.
The rise of the World Wide Web has given embedded designers another quite different option: providing a web page interface over a network connection. This avoids the cost of a sophisticated display, yet provides complex input and display capabilities when needed, on another computer. This is successful for remote, permanently installed equipment such as Pan-Tilt-Zoom cameras and network routers.
ASIC and FPGA solutions
A common configuration for very-high-volume embedded systems is the system on a chip (SoC) which contains a complete system consisting of (multiple processors, multipliers, caches and interfaces on a single chip. SoCs can be implemented as an application-specific integrated circuit (ASIC) or using a field-programmable gate array (FPGA).
Reliability
Embedded systems often reside in machines that are expected to run continuously for years without errors, and in some cases recover by themselves if an error occurs. Therefore the software is usually developed and tested more carefully than that for personal computers, and unreliable mechanical moving parts such as disk drives, switches or buttons are avoided.
Specific reliability issues may include:
1.The system cannot safely be shut down for repair, or it is too inaccessible to repair. Examples include space systems, undersea cables, navigational beacons, bore-hole systems, and automobiles.
2.The system must be kept running for safety reasons. "Limp modes" are less tolerable. Often backups are selected by an operator. Examples include aircraft navigation, reactor control systems, safety-critical chemical factory controls, train signals, engines on single-engine aircraft.
3.The system will lose large amounts of money when shut down: Telephone switches, factory controls, bridge and elevator controls, funds transfer and market making, automated sales and service.
Embedded software architectures
There are several different types of software architecture in common use.
Simple control loop
In this design, the software simply has a loop. The loop calls subroutines, each of which manages a part of the hardware or software
Interrupt controlled system
Some embedded systems are predominantly interrupt controlled. This means that tasks performed by the system are triggered by different kinds of events. An interrupt could be generated for example by a timer in a predefined frequency, or by a serial port controller receiving a byte.
These kinds of systems are used if event handlers need low latency and the event handlers are short and simple.
Usually these kinds of systems run a simple task in a main loop also, but this task is not very sensitive to unexpected delays.
Sometimes the interrupt handler will add longer tasks to a queue structure. Later, after the interrupt handler has finished, these tasks are executed by the main loop. This method brings the system close to a multitasking kernel with discrete processes.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment